Nitrogen addition changes grassland soil organic matter decomposition

نویسندگان

  • Charlotte E. Riggs
  • Sarah E. Hobbie
  • Elizabeth M. Bach
  • Kirsten S. Hofmockel
  • Clare E. Kazanski
چکیده

Humans have dramatically increased the deposition and availability of nutrients, such as nitrogen (N), worldwide. Soil organic matter (SOM) is a significant global reservoir of carbon (C); however, the effects of N enrichment on this large, heterogeneous C stock are unclear. Nitrogen has variable effects on the biological, chemical, and physical factors that determine SOM pool mean residence time; consequently, we predicted that N enrichment would have distinct effects on SOM pools, including the pool that is readily available for microbial decomposition, as well as the pools that have been stabilized against microbial decomposition via aggregate occlusion and mineral association. We addressed this gap in knowledge by measuring the effects of N addition on different SOM pools at five grassland experiments in the US Central Great Plains that participate in the Nutrient Network and have been fertilized for three or five years. Overall, N addition decreased microbial respiration of unoccluded OM by as much as 29 % relative to control plots, and consequently, decreased C loss from this pool. Furthermore, N addition tended to increase soil aggregation and C occlusion in large macro-aggregates. These results suggest that N addition will increase C sequestration by slowing the decomposition of SOM, as well as stabilizing SOM against microbial decomposition in aggregate-occluded pools. However, the effects of N on all pools studied varied among sites, possibly due to site variation in soil texture. Consequently, increased sequestration of soil C in response to N enrichment may not be universal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils

Empirical studies show that nitrogen (N) addition often reduces microbial decomposition of soil organic matter (SOM) and carbon dioxide (CO2) production via microbial respiration. Although predictions from theoretical models support these findings, the mechanisms that drive this response remain unclear. To address this uncertainty, we sampled soils of three grassland sites in the U.S. Central G...

متن کامل

Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau

Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered preci...

متن کامل

Nitrogen deposition and plant species interact to influence soil carbon stabilization

Feike A. Dijkstra* Sarah E. Hobbie Johannes M. H. Knops and Peter B. Reich Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA *Correspondence: E-mail: [email protected] Abstract Anthropogenic ni...

متن کامل

Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.

It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the cou...

متن کامل

Mechanisms of plant species impacts on ecosystem nitrogen cycling

J. M. H. Knops,* K. L. Bradley and D. A. Wedin School of Biological Sciences, School of Natural Resource Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE 68588, USA. *Correspondence: E-mail: [email protected] Abstract Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015